

Impacts of Observations on NCEP GODAS Analysis

Y. Xue, C. Wen, D. Behringer, A. Kumar

NCEP/NOAA, USA

Global Ocean Observations

from Saha et al. (2010)

Recent Challenges: TAO-TRITON Mooring Array

- TAO data return fell below 40% in early 2014; since returned to 80%, for now.
- Around half of TRITON Moorings will be removed by mid 2015.

- Review of observing system requirements and implementation
- · Presentations on status of all aspects of system
- Presentations on potential new science and contributions
- Sponsors:

- · Chaired by: David Anderson and Toshio Suga
- Report: Published April 2014 (www.ioc-goos.org/tpos2020)

- The role of salinity
- Changes in predictability
- Evidence from systematic errors
 - To guide design, process studies, etc.
- Frameworks for sensitivity studies

Courtesy of Neville Smith & Billy Kessler

Real-Time Ocean Reanalyses Intercomparison

(http://www.cpc.ncep.noaa.gov/products/GODAS/multiora_body.html)

- Assess uncertainties in tropical Pacific temperature analysis in real time for ENSO monitoring and prediction
- Explore any connections between gaps in TAO observations and spreads among ensemble ORAs
- Articulate needs for sustained and enhanced ocean observations for TPOS2020
- Monitor signal-to-noise ratio and climate signals associated with ENSO, Pacific Decadal Oscillation, Indian Ocean Dipole, Tropical Atlantic Variability

Tropical Pacific Observing Systems

15N

10N

(b) TAO/TRITON

Black: All data

Red: TAO/TRITON

(a)

8S-8N

15

30

45

60

75

90

2400

2000

Blue: XBT

Green: Argo

5

10

15

20

25

30

2004-2011

Coordinated Observing System Experiments At NCEP and GFDL (2004-2011)

	CTL	ALL	noMoor	noArgo
In situ data included	no profiles	all profiles	all except moorings	all except Argo
XBT	×	√	√	✓
TAO	×	√	×	√
Argo	×	✓	√	×

- What are the mean biases and RMSE (monthly anomalies) in the control simulations when no in situ observations are assimilated?
- How well are mean biases and RMSE constrained by assimilation of all in situ observations?
- What are influences of withholding mooring or Argo data on mean biases and RMSE?

NCEP's Global Ocean Data Assimilation System

- MOM4p1, 0.5° resolution, 1/4° in 10°S-10°N, 40 levels
- Daily fluxes from NCEP Reanalysis 2
- 3D-VAR, Univariate in temperature and salinity (Behringer 2007)
- Horizonal covariance with scale elongated in zonal direction, vertical covariance as function of local vertical temperature gradient
- Temperature profiles and OISST assimilated
- Synthetic salinity derived with climatology T/S relationship and temperature profiles from XBT and moorings, observed salinity from Argo assimilated
- Altimetry SSH not assimilated
- Temperature (salinity) at 5m is relaxed to daily OISST (Levitus salinity climatology) with 10 (30) day relaxation time scales.

Evaluation of OSEs

Evaluation data

- TAO temperature and current
- Altimetry SSH from AVISO
- Surface current from OSCAR
- EN4 temperature and salinity analysis (objective analysis based on in situ data only) is used as reference but not the "truth"

Evaluation Methods

- Mean and annual cycle
- Standard deviation (STD)
- Root-mean-square error (RMSE) and anomaly correlation coefficient (ACC)
- Integrated RMSE in upper 300m

Mean Biases

Temp at Eq

STD Biases near Eq

TAO (dotted line)
ALL
noMoor
noArgo
CTL

130°W-100°W

Mean Biases

STD Biases

11°N-12°N, 130°W-100°W

Variance of Temp. Increment

PMSE with Altimetry SSH

Correlation with OSCAR U

Mean Biases

STD Biases

- SSS anomaly associated ENSO was well simulated by HyGODAS.

Summary

- Observing System Experiments (OSEs) were used to evaluate relative impacts of TAO/TRITON and Argo data on NCEP GODAS ocean reanalysis in 2004-2011.
- Without assimilation of any in situ data, GODAS had large mean biases, STD biases and RMSE.
- Assimilation of in situ data significantly reduced mean biases, STD biases and RMSE in all variables except zonal current at equator.
- For constraining temperature analysis, the TAO/TRITON data is more critical than the Argo data in the equatorial Pacific, but the Argo data is more important in off-equatorial regions.
- For constraining salinity, sea surface height and surface current analysis, the influence of Argo data is more critical.
- The OSE simulations reveal several drawbacks in GODAS: 1) Without Argo data GODAS had erroneous variability in 8N-14N and 8S-15S probably due to too strong fitting to nearby TAO and sparse XBT data; 2) salinity variability is too damped due to assimilation of synthetic salinity.

 SSS was improved from GODAS to HyGODAS, particularly in the tropical Pacific.

